Bài Tập Tham Khảo Ôn Tập Toán ĐGNL 2025 (Bộ 30 câu bổ sung)

Hướng dẫn: Chọn đáp án đúng nhất cho mỗi câu hỏi trắc nghiệm.


  1. Tìm tập nghiệm của phương trình $\sin(2x) = \frac{1}{2}$.
    A. $x = \frac{\pi}{12} + k\pi; x = \frac{5\pi}{12} + k\pi \quad (k \in \mathbb{Z})$
    B. $x = \frac{\pi}{6} + k2\pi; x = \frac{5\pi}{6} + k2\pi \quad (k \in \mathbb{Z})$
    C. $x = \frac{\pi}{12} + k\frac{\pi}{2}; x = \frac{5\pi}{12} + k\frac{\pi}{2} \quad (k \in \mathbb{Z})$
    D. $x = \frac{\pi}{6} + k\pi; x = \frac{5\pi}{6} + k\pi \quad (k \in \mathbb{Z})$

  2. Cho số phức $z = 5 - 2i$. Tính môđun của số phức $\bar{z}$.
    A. $|\bar{z}| = \sqrt{29}$
    B. $|\bar{z}| = \sqrt{21}$
    C. $|\bar{z}| = 29$
    D. $|\bar{z}| = 7$

  3. Trong không gian Oxyz, tính khoảng cách từ điểm $M(1; 2; 0)$ đến mặt phẳng $(P): x + 2y - 2z + 1 = 0$.
    A. $d(M, (P)) = 2$
    B. $d(M, (P)) = \frac{5}{3}$
    C. $d(M, (P)) = \frac{6}{\sqrt{9}}$
    D. $d(M, (P)) = \frac{5}{9}$

  4. Cho hình lập phương ABCD.A'B'C'D'. Góc giữa đường thẳng AC' và mặt phẳng (ABCD) bằng bao nhiêu? (Giả sử cạnh hình lập phương là $a$)
    A. $30^\circ$
    B. $45^\circ$
    C. $60^\circ$
    D. $\arctan(\frac{1}{\sqrt{2}})$

  5. Viết phương trình tiếp tuyến của đồ thị hàm số $y = x^3 - 2x + 1$ tại điểm có hoành độ $x_0 = 2$.
    A. $y = 10x - 15$
    B. $y = 10x + 5$
    C. $y = 6x - 7$
    D. $y = 6x + 17$

  6. Tìm tập nghiệm của bất phương trình $\log_3(x^2 - 8) \ge 2$.
    A. $[- \sqrt{17}; -\sqrt{8}) \cup (\sqrt{8}; \sqrt{17}]$
    B. $(-\infty; -\sqrt{17}] \cup [\sqrt{17}; +\infty)$
    C. $[-\sqrt{17}; \sqrt{17}]$
    D. $(\sqrt{8}; \sqrt{17}]$

  7. Từ một nhóm gồm 6 nam và 4 nữ, chọn ngẫu nhiên một đội gồm 3 người. Tính xác suất để đội được chọn có ít nhất 2 nữ.
    A. $\frac{1}{2}$
    B. $\frac{1}{3}$
    C. $\frac{7}{120}$
    D. $\frac{46}{120}$

  8. Cho cấp số nhân $(u_n)$ với $u_1 = 2$ và công bội $q = 3$. Tính tổng 5 số hạng đầu tiên $S_5$.
    A. $S_5 = 242$
    B. $S_5 = 162$
    C. $S_5 = 243$
    D. $S_5 = 81$

  9. Tính diện tích $S$ của hình phẳng giới hạn bởi đồ thị hàm số $y = x^2$, trục hoành và hai đường thẳng $x=1, x=2$.
    A. $S = \frac{7}{3}$
    B. $S = \frac{8}{3}$
    C. $S = 3$
    D. $S = 7$

  10. Tìm tất cả các giá trị thực của tham số $m$ để phương trình $x^4 - 2x^2 + m = 0$ có đúng 3 nghiệm thực phân biệt.
    A. $m=0$
    B. $m=1$
    C. $m=0$ hoặc $m=1$
    D. Không có giá trị $m$ nào

  11. Trong không gian Oxyz, cho hai vector $\vec{a} = (1; -1; 2)$ và $\vec{b} = (2; 1; 0)$. Tính $\vec{a} \cdot \vec{b}$.
    A. $1$
    B. $0$
    C. $2$
    D. $-1$

  12. Cho mặt cầu có bán kính $R = 3$. Tính diện tích $S$ của mặt cầu đó.
    A. $S = 9\pi$
    B. $S = 36\pi$
    C. $S = 12\pi$
    D. $S = 27\pi$

  13. Tìm nghiệm của phương trình $5^{x-1} = \frac{1}{25}$.
    A. $x=-1$
    B. $x=3$
    C. $x=-2$
    D. $x=-3$

  14. Có bao nhiêu cách chọn ra 3 học sinh từ một nhóm gồm 10 học sinh?
    A. $P_{10}^3 = 720$
    B. $A_{10}^3 = 720$
    C. $C_{10}^3 = 120$
    D. $10^3 = 1000$

  15. Hàm số nào sau đây là hàm số chẵn?
    A. $y = \sin x$
    B. $y = \cos x$
    C. $y = \tan x$
    D. $y = x^3 + x$

  16. Trong mặt phẳng Oxy, viết phương trình đường tròn $(C)$ có tâm $I(1; -3)$ và bán kính $R=4$.
    A. $(x-1)^2 + (y+3)^2 = 16$
    B. $(x+1)^2 + (y-3)^2 = 16$
    C. $(x-1)^2 + (y+3)^2 = 4$
    D. $(x+1)^2 + (y-3)^2 = 4$

  17. Tìm điểm cực đại của hàm số $y = -x^3 + 3x + 1$.
    A. $x = -1$
    B. $x = 1$
    C. $x = 0$
    D. $x = \sqrt{3}$

  18. Biểu đồ cột dưới đây cho biết doanh thu (triệu đồng) của cửa hàng A trong 4 quý năm 2024.
    *(Giả sử có biểu đồ cột: Quý 1: 120, Quý 2: 150, Quý 3: 110, Quý 4: 180)*
    Tổng doanh thu cả năm 2024 của cửa hàng A là bao nhiêu?
    A. 460 triệu đồng
    B. 560 triệu đồng
    C. 550 triệu đồng
    D. 660 triệu đồng

  19. Trong không gian Oxyz, cho điểm $A(1; 0; 2)$ và đường thẳng $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$. Tính khoảng cách từ điểm A đến đường thẳng $d$.
    A. $\sqrt{2}$
    B. $\sqrt{3}$
    C. $2$
    D. $\sqrt{5}$

  20. Tính giới hạn $L = \lim_{n \to +\infty} \frac{4n^2 - n + 1}{2n^2 + 3}$.
    A. $L = 4$
    B. $L = 2$
    C. $L = 1$
    D. $L = \frac{1}{2}$

  21. Giải hệ phương trình $\begin{cases} x + y = 5 \\ 2x - y = 1 \end{cases}$.
    A. $(x; y) = (1; 4)$
    B. $(x; y) = (2; 3)$
    C. $(x; y) = (3; 2)$
    D. $(x; y) = (4; 1)$

  22. Trong không gian Oxyz, viết phương trình mặt phẳng $(P)$ đi qua ba điểm $A(1; 0; 0)$, $B(0; 2; 0)$, $C(0; 0; 3)$.
    A. $x + 2y + 3z = 1$
    B. $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 0$
    C. $6x + 3y + 2z = 6$
    D. $2x + y + \frac{2}{3}z = 2$

  23. Tính tích phân $J = \int_0^1 x e^x dx$.
    A. $J = 1$
    B. $J = e$
    C. $J = e - 1$
    D. $J = 0$

  24. Gieo một con súc sắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm trong hai lần gieo bằng 7.
    A. $\frac{1}{6}$
    B. $\frac{5}{36}$
    C. $\frac{7}{36}$
    D. $\frac{1}{12}$

  25. Cho hình nón có bán kính đáy $r$ và chiều cao $h$. Một hình trụ cũng có bán kính đáy $r$ và chiều cao $h$. Tỉ số thể tích giữa khối nón và khối trụ là:
    A. $1$
    B. $\frac{1}{2}$
    C. $\frac{1}{3}$
    D. $3$

  26. Tìm tất cả các giá trị thực của tham số $m$ để bất phương trình $x^2 - 2mx + m^2 + 1 > 0$ nghiệm đúng với mọi $x \in \mathbb{R}$.
    A. $m > 1$
    B. $m < -1$
    C. Mọi giá trị $m$
    D. Không có giá trị $m$ nào

  27. Tìm phần ảo của số phức $z = (1+i)^2$.
    A. $0$
    B. $2$
    C. $2i$
    D. $1$

  28. Một hình tròn có bán kính $R$ thay đổi với tốc độ $2$ cm/s. Hỏi diện tích hình tròn thay đổi với tốc độ bao nhiêu khi $R = 5$ cm?
    A. $10\pi$ cm$^2$/s
    B. $20\pi$ cm$^2$/s
    C. $25\pi$ cm$^2$/s
    D. $50\pi$ cm$^2$/s

  29. Trong mặt phẳng Oxy, cho $\vec{u} = (2; -1)$ và $\vec{v} = (x; 3)$. Tìm $x$ để $\vec{u}$ vuông góc với $\vec{v}$.
    A. $x = \frac{3}{2}$
    B. $x = -\frac{3}{2}$
    C. $x = 6$
    D. $x = -6$

  30. Cho $a > 0, a \neq 1$. Rút gọn biểu thức $P = \log_{a}(a^3 \sqrt{a})$.
    A. $P = 3$
    B. $P = \frac{3}{2}$
    C. $P = \frac{7}{2}$
    D. $P = 4$

Đáp Án (Bộ 30 câu bổ sung)

  1. A
  2. A
  3. A
  4. D
  5. A
  6. B
  7. B *(Xác suất là 40/120 = 1/3)*
  8. A
  9. A
  10. A *(Chỉ khi m=0 pt bậc hai theo t=x² có nghiệm t=0 và t=2)*
  11. A
  12. B
  13. A
  14. C
  15. B
  16. A
  17. B
  18. B
  19. B *(Khoảng cách tính ra là √3)*
  20. B
  21. B
  22. C
  23. A
  24. A
  25. C
  26. C
  27. B
  28. B
  29. A
  30. C

(Lưu ý: Các đáp án đã được kiểm tra lại, nhưng bạn nên tự giải và đối chiếu trong quá trình học.)